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[he characteristic polynomial is (x - 4)z and hence all solutions are of the form

ti=CI4i+czi4i.

in terms of T(n), this is

T(n)= CI nZ + CznZlgn.

3ubstituting Equation 4.27 into the original recurrence yields

nZ = T(n)-4T(n/2)= CznZ

md thus Cz= 1. Therefore

T(n)E 8(nzlogn I nisapowerof2),

regardless of initial conditions (even if T(1) is negative).

Example 4.7.12. Consider the recurrence

T(n)= 2T(n/2)+nlgn

when n is a power of 2, n ~ 2. As before, we obtain

ti ~ T(i) = 2T(2i-I)+i2i

= 2ti-1 + i2i

We rewrite this in the form of Equation 4.10.

ti - 2ti-l =i2i

(4.27)

The characteristic polynomial is (x - 2) (x - 2)z= (x - 2)3 and hence all solutions
are of the form :

ti = cl2i + Czi2i + C3iZ2i.

In terms of T(n), this is

T(n)= Cl n + Cznlgn + C3nlgZn.

Substituting Equation 4.28 into the original recurrence yields

nlgn = T(n)-2T(n/2)= (cz - C3)n + 2C3nlgn,

which implies that Cz = C3and 2C3 = 1, and thus Cz = C3= !. Therefore

T(n)E 8(nlogZ ni n is a power of 2),

regardless of initial conditions.

o

(4.~8)

o
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Re:mark: In the preceding examples, the recurrence given for T(n) onlyapplies
when n is a power of 2. It is therefore inevitable that the solution obtained should
be in conditional asymptotic notation. In each case, however, it is sufficient to add
fue condition that T(n) is eventually nondecreasing to be able to conclude that
the asymptotic results óbtained apply unconditioT\ally for all values of n. This

follows froÍh the smoothness rule (Sedion 3.4) since the functions nlg3, nZlogn
and n 10gZn are smooth.

Example4.7.13. We are now ready to solve one of the most important recurrerices
for algorithmic purposes. This recurrence is particularly useful for the analysis
of divide-and-conquer algorithms, as we shall see in Chapter 7. The constants

no ;" 1, f ~ 1, b ~ 2 and k ~ O are integers, whereas C is a strictly positive real
number. Let T ; N -IR+be an eventually nondecreasing function such that

T(n)= fT(n/b)+cnk n > no (4.29)

when n/no is an exact power of b, that is when n E {bno, b2no,b3no,.. .}. This
time, the appropriate change of variable is n = bi no.

ti = T(bi no) = f T(bi-l no)+c(bino)k

= fti-l + cn~ bik

We rewrite this in the form of Equation 4.10.

ti -fti~i'= (cn~) (bk)i

The right-hand side is of the required form ai p(í) where p(i)= cn~ is a con-
stant polynomial (of degree O) and a = bk. Thus, the characteristic polynomial is
(x - f) (x - bk) whose rQots are f and bk. From this, it is tempting (but faL" in
genera1!) to conclude that all solutions are of fue form

ti = Cl fi + Cz(bk)i. (4.30)

To write this in terms of T(n), note that i = logb(n/no) when n is of the proper
form, and thus di.= (n/no)logbd for arbitrary positive values of d. Therefore,

T(n) = (Cl/n~ogbl!) nlogbl! + (cz/n~)n"
= C3 nlogbl! + C4nk

(4.31)

for appropriate new constants C3and C4. To leam about these constants, we sub-
stitute Equation 4.31 iÍ1to the original recurrence.

cnk = T(n)-.(]T(n/b)

= C3n]ogbl!+ C4nk - f (C3(n/b)logbl!+C4 (n/b)k)

= (1 - ;k) C4nk
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Therefore C4 = c/(l- .e/bk). To express T(n) in asymptotic notation, we need to
keep only the dominant term in Equation 4.31. There are three cases to consider,

depending whether .e is smal!er than, bigger than or equal to bk.

<> If.e < bk then C4> Oand k > logb.e. Therefore the term C4n k dominates Equa-
tion 4.31. We conclude that T(n)E EJ(nk I (n/no) is a power of b). But nk
is a smooth function and T(n) is eventually nondecreasing by assumption.
Therefore T(n)E EJ(nk).

<> If.e > bk then C4 < O and logb.e > k. The fact ihat C4is negative implies fuat

C3 is positive, for otherwise Equation 4.31 would imply that T(n) is nega-
tive, contrary to the specification that T : N - IR+.Therefore the term C3nlogb$

dominates Equation 4.31. Furthermore nlogbf is a smooth function and T(n)
is e'ventual!y nondecreasing. Therefore T(n)E EJ(nlogb$).

<>If.e = bk, however, we are in trouble because fue formula for C4involves a divi-
sion by zero! What went wrong is that in this casethe characteristic polynomial
has a single root of multiplicity 2 rather than two distinct roots. therefore Equa-
tion 4.30 does not provide the general solution to the recurrence. Rather, the
general solution in this case is

ti = Cs (bk)i+C6 i (bk)i.

In terms of T(n), this is

T(n)= c7nk + csnk logb(n/no)

for appropriate constants C7and cg. Substituting this into the original recur-
rence, our usual manipulation yields a surprisingly simple Cs= c. Therefore,
Cnk 10gb n is the dominant term in Equation 4.32 because c was assumed to
be strictly positive at the beginning of this example. Since nk logn is smoofu
and T(n) is eventual!y nondecreasing, we conclude that T(n)E EJ(nk logn).

Putting it al! together,

{

EJ(nk) if.e<bk

T(n)E EJ(nk logn) if.f! = bk

EJ(nlogb$) ife> bk

Problem 4.44 gives a generalization'of this example.

Remark: It often happens in the analysis of algorithms that we derive a recurrence
in the form of an inequality. For instance, we may get

T(n):s .eT(n/b)+cnk n> no
I

when n/no is an exact power of b, instead of Equation 4.29. What can wk say
about the asymptotic behaviour of such a recurrence? First note that we do not
have enough information to determine the exactorder of T (n) because we are given
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only an upper bound on its value. (For all we know, it could be that T(n)= 1 for
all n.) The best we can do in this case is to analyse the recurrence in terms of
the O notation. For this we introduce an auxiliary recurrence patterned after the
original but defined in terms of an equation (not an inequation). In this case

T {T(no) ifn = no

(n)= .eT(n/b)+cnk if n/no is a power of b, n > no.

This new recurrence falls under the scope of Example 4.7.13, except that we
have no evidence that T(n) is eventually nondecreasing. Therefore Equation 4.33

holds for T(n), provided we use conditional asymptotic notation to restrict n/no
to being a power of b. Now, it is easy to prove by mathematical induction that

T(n):s T(n) for a11n ~ no such that n/no is a power of b. But clearly if

f(n)E EJ(t(n) I P(n))

andg(n):s f(n) fora11 n such that P(n) holds, theng(n)E O(t(n) IP(n)). There-
fore, our conclusion about the conditional asymptotic behaviour of T(n) holds for
T(n) aswel!, provided wereplace EJby O. Final!y, wheneverwe know that T(n) is
eventual!y nondecreasing, we can invoke the smoothness of the functions involved

to conclude that Equation 4.33holds unconditional!y for T(n), provided again.ve
replace EJby O. The solution of our recurrence is thus

.

{

O(nk) if.f! < bk

T(n)E O(nk logn) if.e = bk
O(nlogbf) if.e>bk

We sha11study further recurrences involving inequalities in Section 4.7.6.
So far, the changes of variable we have used have all been of the same logarith-

mic nature. Rather different changes of variable are sometimes useful. We illustrate

this with one example that comes from the analysis of the divide-and-conquer al-
gorithm for multiplying large integers (see Section 7.1).

Example 4.7.14. Consider an eventua11y nondecreasing function T(n) such that

T(n):s T(ln/2J)+T(fn/21)+T(1 + fn/2l)+cn (4.34)

for a11sufficienUylarge n, where c is some positive real constant. As explained in
the remark fol!owing the previous example, we have to be content here to analyse
the recurrence in terms of the O notation rather than the EJnotation.

Let no ~ 1 be large enough that T(m)~ T(n) for a11m ~ n ~ no/2 and Equa-
tion 4.34 holds for al! n > no. Consider any n > no. First observe that

ln/2J :S fn/21 < 1 + fn/21.

which implies that

T(ln/2J),s T(fn/21b T(l + rn/21).
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Therefore, Equati9n 4.34 gives rise to

T(n):$; 3T(1 + rn/21)+cn.

Now make a change of variable by introducing a ~ew function Tsuch that T(n)=
T(n + 2) for a11n. Consider again any n > no.

T(n)= T(n + 2) :$;3T(1 +r(n +2)/2l)+c(n +2)
:$;3T(2 + rn/21)+2cn (because n + 2:$;2n)

= 3Tan/21)+2cn

In particular,
T(n):$; 3T(n/2)+dn n> no

when n/no is a power of 2, where d = 2c. This is a special caseof the recurrence
analysed in the remark fo11owingExample 4.7.13,with.f! = 3, b = 2 and k = 1. Since
.f!> bk, we obtain T(n)E O(nlg3). Fina11y, we use one last time the fact that T(n)
is eventua11y nondecreasing: T(n):$; T(n + 2)= T(n) for any sufficientIy large n.
Therefore any asymptotic upper bound on T(n) applies equa11yto T(n), which
concludes the proof that T(n)E O(nlg3). O

4.7.5 Range transformations

When we make a change of variable, we transform the domain of the recurrence.
Instead, it may be useful to transform the range to obtain a recurrence in a form
that we know how to solve. Both transformations can sometimes be used together.
We give just one example of this approach.

Consider the fo11owing recurrence, which defines T(n) when n
I

T(n)=
{

1/3 Un = 1 .

n TZ(n/2) otherwise

The first step is a change of variable: let ti denote T(2i).

Example 4.7.15.

is a power of 2.

ti =T(2i) =2iTz(2i-l)

= 2i t~-l

At first glance, none of the techniqu~s we have seen applies to this recurrence $ince
it is not linear; furthermore the coefficient 2i is not a constant. To transfor~ the

range, we create yet another recurrence by using Ui to denote 19ti. .

Ui = 19ti = í + 2lgti-l
= í + 2Ui-l

This time, once rewritten as
Ui - 2Ui-l = í,
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the recurrence fits Equation 4.10. The characteristic polynomial is

(x - 2)(x - 1)z

and thus a11solutions are of the form

Ui = Cl 2 i + Cz 1 i + C3 í 1 i .

Substituting this solution into the recurrence for Ui yields

í = Ui - 2Ui-l

= c12i + Cz+ C3í -2(q2i-l + Cz+ C3(í -1))

= (2C3 - CZ)-C3 í

and thus C3'=-1 and Cz= 2C3= -2. Therefore, the general solution for Ui, if the
initial condition is not taken into account, is Ui = Cl2i - í - 2. This gives us the
general solution for ti and T(n).

ti =2uI =2C1Z/_i-Z

2cln
T(n)= tlgn = 2cln-lgn-Z= -4n

We use the initial condition T(1)= 1/3 to determine Cl: T(1)= 2cI/4 = 1/3 implies
that Cl = 19(4/3)=2 -lg 3.The finalsolutionis therefore

2Zn
T(n)= 4n3'"

o

4.7.6 Asymptoticrecurrences

When recurrences arise in the analysis of algorithms, they are often not as '" clean"
as

S {a ifn=l
(n)= 4S(n + 2)+bn if n > 1

for specific positiye real constants a and b. Instead, we usua11yhave to deal with
something less precise, such as

(4.35)

T(n)= 4 T(n + 2)+ f(n) (4.36)

when n is sufficientIy large, where a11we know about f (n) is that it is in the exact
order of n, and we know nothing specific about the initial condition that defines
T(n) except that it is positive for a11n. Such an equation is ca11ed an asymptotic re-
currence.Fortunately, the asymptotic solution of a recurrence such as Equation 4.36
is virtua11y always identical to that of the simpler Equation 4.35. The general tech-
nique to solve an asymptotic recurrence is to "sandwich" the function it defines
between two recurrences of the simpler type. When both simpler recurrences have.


